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Abstract
We consider the fundamental noise properties of propagation through slow- and fast-light
optical media based on gain or loss processes. For purely quantum mechanical reasons, any
gain or loss process will add noise to a transmitted light field. We derive a relation between the
noise figure describing the decreased signal-to-noise ratio of the transmitted laser pulse and the
fractional delay or advancement of the pulse. We apply these results explicitly to the situation
of operation on the line center of a gain or loss line. We find that for an ideal gain medium the
noise figure never exceeds a factor of two. For a loss medium, there is no limit as to how large
the noise figure can become. The increased noise in this case is the result of the random loss of
photons from the optical field.
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1. Introduction

In this paper we address the following question. How much
noise, if any, is added to a beam of light as it propagates
through a medium with an extreme value of the group velocity?

The motivation for this study is as follows. It is now
well established that it is possible to find situations in which
the group velocity of light vg is significantly different from
the vacuum speed of light c [1, 2]. In particular, one speaks
of slow light for vg � c and fast light for vg > c or vg

negative. The special case of vg negative is sometimes called
backwards light. The most extreme values of the group index
often occur when the signal wavelength is at or near a strong
gain or absorption resonance of a material system. However, it
is also well known that a beam of light becomes noisier upon
propagation through a medium with gain or loss [3]. Thus one
might expect light beams to become noisier upon propagation
through slow- or fast-light media. In fact, recent studies have
quantified the noise characteristics of slow light based on the
process of electromagnetically induced transparency [4, 5].

In this paper, we examine the relation between the induced
delay or advancement experienced by a light field in passing
through a slow- or fast-light medium and the amount of noise
that is acquired by such a field. We are primarily interested in
determining any fundamental limits to the minimum amount of
noise that must be added to the light field, and in determining
how to minimize this noise. For this reason, we model

the noise properties by means of Caves’s quantum theory
of the amplifier [3]. This model describes the minimum
amount of noise that must, in accordance with the laws of
quantum mechanics, be added to a light field. Of course,
any physical amplifier can introduce additional noise over and
above this minimum amount. This additional noise is often
referred to as technical noise, and can result from thermal
fluctuations or from interactions with other degrees of freedom
of the material medium, such as acoustic phonons [6]. More
general theoretical discussions of the noise properties of optical
amplifiers that include the contribution of these additional
noise sources have been presented previously [7–10].

Let us begin by considering the relationship between noise
and delay/advancement from an abstract perspective. As is
well known, the group velocity can be represented as vg =
c/ng, where the group index is given by ng = n′ + ω dn′/dω,
where n′ is the real part of the complex refractive index n(ω)

and ω is an optical frequency. Throughout this work, we define
the group index to be a purely real quantity. It is known from
the Kramers–Kronig relations that a frequency dependence of
the real part of the refractive index n′ implies that the imaginary
part of the refractive index n′′ must be nonvanishing at some
frequency. Thus gain or loss at some frequency is an intrinsic
feature of dispersion of the real part of the refractive index.
However, this conclusion does not require there to be gain or
loss at the frequency of the signal wave whose velocity is to
be modified. In fact, much recent work on slow and fast light
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has been motivated toward finding situations in which the gain
or loss is minimized at the frequency at which the magnitude
of the group index is maximized. One example of such an
approach is to use electromagnetically induced transparency
to eliminate loss at the frequency of high dispersion of the
refractive index [12]. Another example is to work in the
nearly transparent region between two gain [13, 14] or loss [15]
lines. However, gain or loss can never be eliminated entirely,
and some noise will thereby be introduced. Our procedure
in this paper will therefore be to first develop some general
results pertaining to the noise and dispersive properties of a
material system. We will then apply these results to specific
cases of interest. We note that the noise properties of fast-
light propagation have been treated earlier [16], but from a
somewhat different point of view. In section 5 of the present
paper we will compare our results to those of this earlier work.

2. Quantum noise properties of an ideal optical
amplifier

Let us begin by recalling why all amplifiers and attenuators
must add noise to a beam of light. The theory of these effects
is well established, but for completeness we present a brief
review of the theoretical description of these effects. We begin
by considering the case of an optical amplifier [3, 17], as
illustrated in the upper part of figure 1. One might think that
one could model such a device by assuming that

b̂ = gâ, (1)

where â and b̂ are the standard field operators for the input and
output fields, respectively, and where g is the amplitude gain
of the amplifier. However, a moment’s thought reveals that this
assumption cannot be correct, because both b̂ and â are bosonic
field operators and thus must satisfy the standard commutation
relations

[â, â†] = 1 and [b̂, b̂†] = 1. (2)

Equations (1) and (2) are clearly incompatible, because
equation (1) implies that [b̂, b̂†] must be |g|2 times larger
than [b̂, b̂†], in contradiction to equation (2). We can find
an amplifier relation that is compatible with equation (2) by
assuming that

b̂ = gâ + L̂†, (3)

where L̂† represents some noise source operator. For the
case of amplification by means of an inverted atomic system,
this noise source can be identified with spontaneous emission.
However, we will keep the physical nature of the noise source
unspecified for our present purposes. We assume that this noise
source is uncorrelated with the input field, which implies that
[â, L̂†] = [â, L̂] = 0. If we also assume that the strength
of this noise source is such that L̂ = (|g|2 − 1)1/2 ĉ, where
ĉ is another photon field operator obeying [ĉ, ĉ†] = 1, we
find that the photon commutation relations [â, â†] = 1 and
[b̂, b̂†] = 1 are both satisfied. Throughout this work we assume
that 〈n̂c〉 ≡ 〈ĉ†ĉ〉 = 0, implying that the noise source is in its
ground state and thus contributes the smallest possible amount
of noise.

Figure 1. Schematic illustration of an ideal amplifier (upper) and an
ideal attenuator (lower). L̂ and L̂† represent Langevin noise sources.

Let us now examine the consequences of this noise source.
We recall that the photon number operator for the input mode
is n̂a = â†â and that the photon number operator of the output
mode is n̂b = b̂†b̂, which through use of equation (3) becomes

n̂b = |g|2â†â + g∗â† L̂† + gâ L̂ + L̂† L̂. (4)

By taking expectation values of each side of this equation, we
find that

〈n̂b〉 = G〈n̂a〉 + G − 1, (5)

where we have introduced the intensity gain parameter G =
|g|2. We see that, in addition to the input beam being amplified
by a factor of G, (G −1) noise photons are added to the output
beam. Let us next consider the intensity fluctuations in the
output beam. We find by a similar calculation that the variance
of the photon number in the output beam is given by

〈�n̂2
b〉 = G2〈�n̂2

a〉 + G(G − 1) (〈n̂a〉 + 1). (6)

Here the first term represents the amplification of fluctuations
present in the input beam and the second term represents noise
added to the beam by the amplifier.

It is useful to characterize the noise properties of an
amplifier by means of its noise figure, which we define as the
square of the ratio of signal-to-noise ratios of the input and
output fields. (The square is included to render our definition
consistent with the historical definition; see, for instance, [11].)
Explicitly the noise figure is defined by

F = (S/N)2
a

(S/N)2
b

, (7)

where

(S/N)2
a = 〈n̂a〉2

〈�n̂2
a〉

(8)

and

(S/N)2
b = G2〈n̂a〉2

〈�n̂2
b〉

. (9)

Note that in the latter expression we take the signal to be the
amplified input field, not the total output field which includes
the ‘noise’ contribution G − 1. By introducing expression (6)
for 〈�n̂2

b〉, we find that

F = 1 +
(

1 − 1

G

) 〈n̂a〉 + 1

〈�n̂2
a〉

. (10)
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We now consider the important special case of an input beam
that is strong in the sense that 〈n̂a〉 � 1. We also assume that
the fluctuations in the input beam possess Poissonian statistics
in that 〈�n̂2

a〉 = 〈n̂a〉. We then find that

F ≈ 2 − 1

G
. (11)

It is interesting to examine how this noise figure varies with
the amplifier gain parameter G. For G = 1 (no gain), the
noise figure is equal to unity, showing that there is no change
in the signal-to-noise ratio. In the limit of high gain, G � 1,
the noise figure takes the value 2 under the assumptions made.
We thus see that, under these conditions, the noise figure of an
ideal amplifier lies always in the range from 1 to 2. We shall
see next that an optical attenuator behaves very differently.

3. Quantum noise properties of optical attenuators

It is straightforward to repeat the calculation just presented for
the case of an optical attenuator. One finds that, in order for
the output field to possess standard commutation relations, the
transmission properties of the attenuator must be described by

b̂ = t â + L̂, (12)

where t is the amplitude transmission of the attenuator and
where we now require that L̂ = (1 − |t|2)1/2ĉ with [ĉ, ĉ†] = 1
and where we again assume that 〈n̂c〉 ≡ 〈ĉ†ĉ〉 = 0. We can
then calculate the noise figure of the attenuator and find it to be
given by

F = 1 +
(

1

T
− 1

) 〈n̂a〉
〈�n̂2

a〉
, (13)

where T = |t|2 is the intensity transmission. For the special
case in which the fluctuations in the input field obey Poisson
statistics, the noise figure reduces to

F = 1

T
. (14)

Note that, unlike for the case of the optical amplifier, the
noise figure of an optical attenuator can becomes arbitrarily
large, which occurs in the limit of small transmission. This
difference, of course, will influence the noise characteristics
of slow- and fast-light media. These results are summarized
in figure 2, which shows how the noise figure of an ideal
attenuator or amplifier depends on the transmission through the
device.

4. Noise properties of specific slow-/fast-light systems

Let us now consider a specific slow-light situation. We
consider an optical medium that possesses a single gain
resonance of line-center gain coefficient g0 and linewidth γ

centered at frequency ω0. We can describe such a medium in
terms of a complex refractive index given by

n(ω) = 1 + g0λ

4π

γ

ω − ω0 + iγ
. (15)

Figure 2. Noise figure of an ideal optical amplifier or attenuator as
predicted by equations (11) and (14) plotted against the transmission
through the device. These predictions assume that the fluctuations of
the input beam obey Poissonian statistics and that, for the case of the
amplifier (G > 1), the mean photon number of the input beam
satisfies 〈n̂a〉 � 1.

By means of a simple calculation, we find that the group index
ng = n′ + ω (dn′/dω) at line center for a medium of this sort
is given by

ng = 1 + ω

γ

g0λ

4π
= 1 + g0c

2γ
. (16)

The induced time delay on transit through this medium, relative
to vacuum propagation, is thus given by

τg = (ng − 1)L

c
= g0L

2γ
. (17)

In writing this result in this form, we have implicitly assumed
that the light pulse is spectrally sufficiently narrow that pulse
distortion due to dispersion of the group velocity is small. In
this case the time delay is reliably estimated by means of the
group velocity.

We next determine the amount of noise added to this light
field. Through use of equation (11) we find that

F = 2 − 1

G
= 2 − 1

exp(g0L)
(18)

or through use of equation (17) that

F = 2 − 1

exp(2τgγ )
. (19)

From this result we see that the noise in the output beam
increases with increasing delay, but that the noise figure never
exceeds a factor of two.

We can perform an analogous calculation for the case of a
fast-light medium described by an isolated absorption line [18].
For this situation the expressions for the refractive index and
group index are given by expressions of the same form as
equations (15) and (16) but with g0 replaced by −α0. The pulse
advancement is thus given by

τa = − (ng − 1)L

c
= α0 L

2γ
. (20)
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The noise properties in this case are described by equation (14).
We thus find that

F = 1

T
= 1

exp(−α0 L)
(21)

or through use of equation (20) that

F = 1

exp(−2τaγ )
. (22)

This equation shows that formally the noise figure can become
arbitrarily large for large values of the time advancement.
There seems to be no fundamental limit on how large the
fractional advancement (advancement measure in units of
pulse width) can become [19]. However, there is strong
empirical evidence that the time advancement can never exceed
several pulse widths [20–22], and thus that the parameter τaγ

cannot become much larger than unity. We thus conclude that
the noise figure cannot become larger than approximately 10.

5. Discussion and summary

We have noted that slow-light methods often employ media
that produce some level of gain or loss at the frequency of the
signal wave, and that as a consequence some amount of noise
is always added to the signal wave. We have quantified this
effect by determining the noise figure of a slow-light medium,
which is defined to be the factor by which the square of the
signal-to-noise ratio of a signal pulse is decreased as the pulse
propagates through the medium. For the case of a slow-light
medium based upon an ideal gain resonance, the noise figure
is never larger than a factor of two, which shows that noise
resulting from the slow-light process itself is not expected to
play a major role under these conditions. We have treated the
case of line-center operation, where the influence of gain might
be expected to be largest, but we find that the signal-to-noise
ratio of the transmitted pulse is not significantly degraded. On
the other hand, for the case of fast light based on an absorption
resonance, there is no formal limit as to how large the noise
figure can become. However, once the empirical constraint on
the maximum observable time advancement is included in the
model, we conclude that the noise figure can never exceed a
factor of ten. The noise in this case can be identified as arising
solely from the random loss of photons from the signal field.

A related treatment of the noise aspects of fast-light
propagation has been presented by Kuzmich et al [16]. These
authors conclude that quantum noise does play a significant
role in imposing causality in fast-light propagation. In
particular, these authors define a signal velocity in terms of
what one could actually measure under realistic laboratory
conditions, and conclude that quantum noise prevents the

signal velocity so defined from becoming greater than c. This
conclusion seems to be at odds with the conclusion reached
by the present work. We believe that the differing conclusion
results from the fact that the present treatment models the entire
pulse as a single field mode and asks how much noise is added
to that mode. This sort of analysis might be most relevant for
analyzing the noise properties of a telecommunications system.
In contrast, Kuzmich et al [16] were interested in the amount
of noise added to the very leading edge of an optical pulse. It
seems likely that the differences in the way the question has
been formulated leads to the somewhat different conclusions
of these two treatments.
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